Objective:
Alcohol use and problem drinking are associated with smoking relapse and poor smoking-cessation success. User-generated content in online social networks for smoking cessation provides an opportunity to understand the challenges and treatment needs of smokers. This study used machine-learning text classification to identify the prevalence, sentiment, and social network correlates of alcohol-related content in the social network of a large online smoking-cessation program, BecomeAnEX.org.
Method:
Data were analyzed from 814,258 posts (January 2012 to May 2015). Posts containing alcohol keywords were coded via supervised machine-learning text classification for information about the user’s personal experience with drinking, whether the user self-identified as a problem drinker or indicated problem drinking, and negative sentiment about drinking in the context of a quit attempt (i.e., alcohol should be avoided during a quit attempt).
Results:
Less than 1% of posts were related to alcohol, contributed by 13% of users. Roughly a third of alcohol posts described a personal experience with drinking; very few (3%) indicated “problem drinking.” The majority (70%) of alcohol posts did not express negative sentiment about drinking alcohol during a quit attempt. Users who did express negative sentiment about drinking were more centrally located within the network compared with those who did not.
Conclusions:
Discussion of alcohol was rare, and most posts did not signal the need to quit or abstain from drinking during a quit attempt. Featuring expert information or highlighting discussions that are consistent with treatment guidelines may be important steps to ensure smokers are educated about drinking risks.